The Innovation Digest

Where the Fearless Innovators come to learn and grow.
  1. Blog
  2. /
  3. Advanced Analytics
  4. /
  5. A Natural Language...

A Natural Language Processing approach to Data Exploration with Analance

 | 3 min read
A Natural Language Processing approach to Data Exploration with Analance™

What if you can get insights into understanding your customers better, know what they need, and make inferences based on their mood?

We’re now proud to announce one of the upcoming features of our release—a powerful set of natural language processing (NLP) algorithms. With Analance, you’ll be able to use 5 new algorithms to enhance your sentiment and text analytics capabilities across your organization.

In this post, we’ll outline the 5 new algorithms and then go into two detailed real-world examples of the insights you’ll get from deploying them as part of your analytics strategy.

5 new NLP algorithms, explained

This natural language processing algorithms list will give you an idea of the capabilities offered by sentiment and text analytics.

5 new Natural Language Processing algorithms

Real-world examples

To illustrate what these algorithms can do for your organization, here are two real world uses for them.

1. Find out what your customers think

Feedback Sentiments
Feedback Sentiments

Our first example, which makes use of the SVM – Multi Class algorithm, takes feedback from multiple social media platforms (data points) and classifies them according to the poster’s mood—be it positive, neutral, or negative.

The picture above gives you an idea of the results you’ll get from this algorithm. It shows what customers think about a video streaming platform.

This algorithm can give you a lot of insight into your customers’ opinions on your products and/or services and help you extract—and better respond to—negative comments and service issues.

2. Looking at trends 

Analance Sentiments Dashboard

Another example is using the Text Clustering K-Means algorithm to cluster similar terms into a word cloud that shows you which general topics or comments are trending.

In the picture above, you’ll see various advanced analytics dashboards for an online shopping site. Here, you can see the kinds of insights that this algorithm can provide, including which products are the best (or worst) reviewed, if people are having trouble with shipping or the site, and whether people are satisfied with the sellers.

This can give you a lot of valuable and actionable information that can help you target services and improve business practices.

These are just two possible real-world examples of how you can use natural language processing models and artificial intelligence to enhance your business analytics capabilities.

About the author

Salma Aziz

Salma Aziz

Salma Aziz leads the go-to market strategy and collaborates with product, sales, solutions, and the marketing teams to help realize how solutions designed by Sryas accelerates business transformation.

Share this post

Subscribe to the Innovation Digest

Get exclusive data & tech insights delivered to your inbox.

Related articles

How to integrate customer 360 faster

How to integrate customer 360 faster

Data analytics is a complex process that demands time and effort from data scientists. From cleaning and prepping data to performing data analysis, data scientists go through an extensive procedure to uncover hidden patterns, identify

Read more »